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We explain a simple inductive method for the analysis of the convergence of
cluster expansions (Taylor expansions, Mayer expansions) for the partition
functions of polymer models. We give a very simple proof of the Dobrushin�
Kotecky� �Preiss criterion and formulate a generalization usable for situations
where a successive expansion of the partition function has to be used.
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In this short note we explain a new and simple inductive method for the
analysis of the convergence of cluster expansions of so called polymer
models. The notion of a polymer model goes back to Gruber and Kunz(1)

(see also refs. 2�10 for some fundamental contributions to the theory of
cluster expansions; it is impossible to give an exhaustive account here.
A good review is given in ref. 4) and it was Dobrushin(11) who first fully
exploited the fact (already pointed out by Gruber and Kunz) that cluster
expansions of these models are actually Taylor expansions of the logarithm
of the partition function, taken with respect to the fugacities of the con-
sidered polymers. Our new approach was already used in a recent paper(12)

(and a very similar approach was more recently used in refs. 13 and 14) but
here we further simplify and streamline the argument and extend it in order
to be applicable also to partially expanded polymer models and thus multi-
scale expansions. This is important, e.g., in the study of models with random
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impurities (see, e.g., refs. 15 and 16) and in other situations where the
``expandability'' of a given ``large'' polymer (contour) 1 may be clarified
only after expanding all the contours ``smaller than 1.'' In these situations,
sequential expansions are indispensable and it is thus important to know
that even in the case of an ordinary polymer models, the sequential
approach gives an equally good control of the situation as the expansion
``at once.''

1. POLYMER MODELS. THE DOBRUSHIN�KOTECKY� �PREISS
CRITERION

Let P be a set whose elements P1 ,..., P |P| are called polymers (we
should emphasize that the name polymer is used solely for historical
reasons and may be misleading. For our present purposes, the Pi are just
labels for the elements of the finite set and we might as well label them in
the standard way by integers). We suppose given a binary symmetric relation
c of ``compatibility'' between the polymers. This means that in the product
P_P we give a symmetric subset of ``compatible'' pairs (note that this
compatibility relation encodes all what remains of the structural properties
of the physical models). Two polymers which are not compatible are said
to be incompatible and we write P1 c P2 , P1 @ P2 when [P1 , P2] is a com-
patible resp. an incompatible pair. We will assume that P @ P for all P # P.

Following Dobrushin, (11) we will associate to each polymer P a complex
variable wP and introduce the polymer partition function

Z#ZP #ZP, w= :
[P1 ,..., Pn]c : Pi # P

`
n

i=1

wPi
(1)

where the sum is over all families [P1 ,..., Pn]c of pairwise compatible
polymers from P. The n=0 term in (1) (no polymers at all) is set equal
to 1. Note that ZP is a function of the |P| complex variables w1 ,..., w |P| .

Remark. In many applications, there is a spatial structure such that
it is possible to associate a ``support'' supp P, namely a finite subset of Zd,
to a polymer P. In those cases the compatibility P c P� is usually just some
geometrical property of the supports, typically polymers are compatible if
their supports do not intersect. Also the polymer activities arise as some
simple functions depending on the ``shape'' of the polymer, the temperature
and interaction potentials. To avoid confusion, let us stress, however, that
in the abstract polymer models we study now, we do not consider these
``physical'' activities, but all polymers activities wP are now treated as inde-
pendent complex variables. The relation to the physical activities is made
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only later when thermodynamic functions of the abstract polymer model
are evaluated at the physical values of the activities.

As usual we are interested in the computation of the logarithm of the
partition function. We can write its Taylor series around zero

log Z=log ZP, w= :
I # I(P)

wI with wI=CI `
P # supp I

wIP
P (2)

where the sum is over the collection I(P) of all ``multi-indices'' I (integer
valued functions on P). The Taylor coefficients CI , I=(IP)P # P are

CI=(IP1
! } } } IPN

!)&1 �IP1
+ } } } +IPN log ZP

�IP1 wP1
} } } �IPNwPN

}wPi
#0

(3)

where the derivative of log ZP is taken at [wPi
#0, Pi # P], P=[P1 ,..., PN ]].

This purely analytic way of defining the coefficient CI was introduced by
Dobrushin.(11) Traditionally, these coefficients were defined in combinatori-
cal terms as sums over connected graphs with vertices labelled by the
polymers that results from a formal expansion of the logarithm in power
series. Convergence proofs were then based on ingenious combinatorical
methods which contributed to the (bad?) reputation of the cluster expan-
sion method as a very complicated tool (for an excellent exposition and
many of the earlier references, see ref. 4). We hope to show here to what
extent this reputation is unjustified.

A multi-index I on P can be regarded as a collection of polymers
where multiple copies of a single polymer P are allowed. Then the non-
negative integer IP represents the multiplicity of P in I. Write I#(S, IS )
where S=supp I is the ``support of I,'' S=[P # P : IP�1]. Given any
subset S=[P1 ,..., Pn]/P and activities wP , we denote by wS modified
activities such that wS

P =wP , P # S and wS
P =0, P � S.

Notice that we have for any function F given by a power series in
variables [wP , P # P] the relation �SF[wP , P # P]=�S F[wP , P # S]
where the symbol �S denotes a derivative (of any order) taken w.r.t. the
variables [wP , P # S] at [wP#0, P # P]. Hence the coefficients CI are
functions of the multi-index I (on the system of polymers [P # supp I ],
with the compatibility relation P c P$) only.

In fact, nonzero values of CI appear only for indecomposable multi-
indices I; decomposability means that there exists a partition of S=supp I
into two sets S=S1 _ S2 such that [P1 , P2] is a compatible pair \P1 # S1 ,

767Cluster Expansions of Polymer Models



P2 # S2 . We will also use a name cluster for such an indecomposable multi-
index (collection of polymers) I. The collection of all clusters on P will be
denoted by C=C(P).

Indeed, analyze the coefficient CI for a decomposable index I=(S, IS).
If S=S1 _ S2 with S1{<, S2{<, S1 & S2=< and every pair (P1 , P2)
with P1 # S1 , P2 # S2 is compatible, then log ZS, w=log ZS1 , w+log ZS2 , w

and so CI=0, by (3).
The following theorem appeared first in ref. 12, and we will give a even

a bit simplified proof of it that is based on a very simple induction argument.
Put

L=L($)= sup
x # (0, $) {

&log(1&x)
x ==

&log(1&$)
$

(4)

In usual applications, $ will be small and so L=1+O($).

Theorem 1. Assume that there is a function aP�0 on P such that

|wP | ea(P)�$ (5)

holds for any polymer P # P. Moreover, assume that for any polymer
Q # P

:
P @ Q

|wP | ea(P)�
a(Q)

L
(6)

where L is from (4). Then, for any polymer Q # P, the following bound
holds for the sum over all clusters (connected multi-indices) I # C(P)
containing Q:

:
I # C(P): I % Q

|wI |�L |wQ | ea(Q) with wI=CI `
P # supp I

wIP
P (7)

As a consequence one also has a bound, for the sum over all clusters I that
are incompatible with a selected polymer Q # P

:
I # C(P): I @ Q

|wI |�a(Q) (8)

Remark. The criterion in the theorem is similar in spirit, but neither
weaker nor stronger than that of Kotecky� and Preiss(17) (see also ref. 18 for
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a good exposition). It is, however, possible to replace condition (6) by the
condition

:
P @ Q

&log(1&|wP | ea(P))�a(Q) (6$)

and the consequence (7) by

:
I # C(P): I % Q

|wI |�&log(1&|wQ | ea(Q)) with wI=CI `
P # supp I

wIP
P (7)

(condition (5) can then be dropped). The statement of the theorem is then
equivalent to Dobrushin's condition from ref. 11 and weaker than the
Kotecky� �Preiss condition. The inductive proof below carries over without
change. In practice, the original formulation (6), (7) is probably easier to
use. We owe this observation to a discussion with Alan Sokal on the rela-
tion of this work to his recent paper, (13) where the equivalent statement is
also proven.

Remarks. (a) If polymers P are just points of the lattice Z& and
*[ j : j @ i ]�k for each i then the condition |wi |�e&aa�k, i.e., � j @ i |wj |�
ae&a implies �I @ i |wI |�a.

(b) If polymers P are ``bonds'' b=[i, j ] and compatibility of bonds
means just their non-intersection, then the condition (6) (valid, e.g., if
�b % i |wb |�e&aa�2) implies �I % b |wI |�a.

(c) For the low temperature Peierls contours(19�22) of the two dimen-
sional Ising model, a natural choice of the function a is a(P)=a |P| with
a=2;J&C and a suitable C. Then the condition (6)

:
P @ 0

e&2;J |P| ea |P| �4 :
n�4

3ne&(2;J&a) n�a

is obviously verified for 2J; sufficiently larger than log 3 (with suitable C ).

(d) An important application of the convergence result occurs when
the polymer model results from a contour representation in the context of
the Pirogov�Sinai theory.(23�25) In that case the polymers represent local
deviations from some ground state configuration g. To each polymer P one
then associates a subset of the lattice, P

�
/Zd. The incompatibility relation

usually refers then to a sufficient distance between the corresponding ``sup-
ports.'' The function a(P) should then be chosen proportional to the
volume of the support of P chosen as a(P)=a |P

�
| . In such a situation the

convergence of the polymer expansion guarantees the existence of a Gibbs
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state +g corresponding to the ground state g in the following sense: Let
Sg(R) be the set of spin configurations such that there exists a point x at
a distance less then R from the origin such that one can reach infinity
from x on a path along which. the configuration g is realized. Let
Sg=�R<� Sg(R). Then +g(Sg)=1. To see this, note that Sg(R) is not
realized only if there is a contour P those interior contains the ball of
radius R. We call PR the collection of all such polymers. Then by standard
arguments we have that

1&+g(Sg(R))� :
P # P(R)

wPe�I * @ P wI *� :
P # P(R)

wPea(P)

which will go to zero if R goes to infinity. If one has several such polymer
models this means that a rigorous control of the phase coexistence is
established.

(e) In many situations, in particular when polymers are geometric
objects, there is a natural notion of the size of the polymer, like, e.g., their
diameter. In such a situation a stronger variant of (6) gives an exponential
decay of the correlations in the given polymer model. Namely, the state-
ment (8) gives also an information on the decay of the terms wI=
CI >P # supp I wIP

P . Take w~ P=wPed(P) with d(P)=C diam P and require (6)
to hold even for w~ P . Then (8) reads

a(Q)� :
I @ Q

|w~ I |� :
I @ Q

|wI | e�P # supp I d(P)� :
I @ Q

|wI | eC diam supp I

This tells us that the sum �N
I |wI | taken over clusters of diameter at least

N is of order at most e&dN, and only those terms wI appear in the formulas
expressing the correlation between two cylinder events having distance
�N. In the case of two dimensional low temperature Ising contours a
convenient choice of a, d is such that a+d is suitably smaller than
2;J&log 3. Then the correlation length is proven to be of the order 1�d (or
less).

Proof of Theorem 1. Our proof uses, following ref. 12, an induction
over the cardinality |P| of the system P of all available polymers. Suppose
that we already have (by induction assumption) the bound (8), with wI=
CI >P # supp I wIP

P , for the sum of Taylor coefficients of any polymer model
employing a smaller number of polymers than |P|. (It trivially holds for a
model employing no polymers at all.) Then we want to prove the same
bound for a model constructed over P.
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Select a polymer Q, denote by P""Q=[P # P : P c Q] and consider
the partition functions ZP"Q and ZP""Q of the model ``without Q'' resp.
``employing only polymers compatible with Q''

ZP"Q= :
[P1 ,..., Pm ]c Pi # P, Q � [Pi ]

`
i

wPi
; ZP""Q= :

[Q, P1 ,..., Pm]c Pi # P

`
i

wPi

We can obviously decompose the partition function for the set P in the
form

ZP =ZP"Q+wQZP""Q

by writing first the sum over all terms that do not contain Q and then
placing Q and summing over all remaining collections compatible with Q.
Taking the logarithm we get

log ZP =log ZP"Q+log \1+wQ
ZP""Q

ZP"Q + (9)

Since the first summand here counts the sum over all clusters that do not
make use of Q, the second term is necessarily equal to the sum of all
clusters containing Q, i.e., the sum we want to control in (7).

On the other hand, the term ZP""Q �ZP"Q appearing in the second
logarithm is already ``under control'' because it uses partition functions of
polymer models with less than |P| polymers. That is to say we have on the
one hand that

log \1+wQ
ZP""Q

ZP"Q += :
I # C(P): I % Q

wI (10)

and on the other hand

log \1+wQ
ZP""Q

ZP"Q +=log \1+wQ exp \&:
I*

wI*++ (11)

where the sum �I* wI* is precisely over all the clusters I*, from the P"Q
model, which are incompatible with Q, i.e., which contain some polymer
Q� incompatible with Q. The sum �I* wI* can be estimated, using the
induction assumption (7), for any Q� (notice that the clusters I* are taken
from a ``smaller,'' P"Q model) as

:
I*

|wI* |�L :
Q� @ Q

|wQ� | ea(Q� )�a(Q) (12)
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because of (6). Now we will use the following important fact: Consider the
Taylor expansion in the variables wQ , wI* of the function log(1+
wQ exp(&�I* wI*)) and replace all the coefficients in the resulting sum (of
products of wQ and wI*) by their absolute values. Use the following simple
observation.

Lemma. Denote by fOg the relation, between functions of vari-
ables x1 , x2 ,..., xn , defined by the requirement that absolute values of all
Taylor coefficients of f at xi#0 are bounded from above by the corre-
sponding positive Taylor coefficients of g. For any monomial yj=a j > xNi

j

i

denote by y~ j=|aj | > xNi
j

i . Then, for any choice [ y j ] of monomials we have
the relation, interpreting both sides as functions of [xi ],

log \1+x1 exp \:
j

yj++O &log \1&x1 exp \:
j

y~ j++
Proof. Just notice that the Taylor coefficients of ex and &log(1&x)

are all positive.
Therefore,3

:
I # C(P): I % Q

wI O &log \1&wQ exp \:
I*

w~ I*++
and finally, using (12), monotonicity of &log(1&x), and the definition of
L given in (4),

:
I # C(P): I % Q

|wI |�&log \1&|wQ | exp \:
I*

|wI* |++�L |wQ| ea(Q) (13)

which proofs the inductive step for the desired bound (7). We recall that
(8) then follows from (7) by summing the bound (7) over all Q� # P incom-
patible with Q, because any index I incompatible with Q contains at least
one polymer Q� incompatible with Q.

2. PARTIALLY EXPANDED POLYMER MODELS. GENERALIZED
D�K�P CRITERION

Consider now a more general ``interacting'' polymer model where in
addition to polymers P # P (the ``big ones,'' satisfying some compatibility
relation) having weights wP one also has a ``cluster field,'' i.e., a collection
of complex fugacities [wG , G # G] indexed by objects G which we will call
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``chains.'' Assume that a relation G @ P resp. G c P of (in)compatibility
between the chains and polymers is given. On the contrary, all chains
defined to be compatible with each other.

Given complex fugacities [wP] and [wG] we define the ``mixed'' (in
the terminology of refs. 25 and 26 partition function

Z#ZP, G, w= :
[P1 ,..., Pn]c : Pi # P

`
n

i=1

wPi
exp \ :

G: G c Pi \i

wG + (14)

where the first sum is again over all families [P1 ,..., Pn]c of pairwise
compatible polymers in P and the second sum �G wG is over all chains G
compatible with any polymer Pi .

Remark. Mixed partition functions arise from partially expanded
polymer models. Assume that we have a polymer ensemble of the form
P=Pl _ Ps (in most applications, these are the ``large'' and ``small'' polymers
separated according to some criterion). Then

ZP = :
P1 ,..., Pn : Pi # Pl , Q1 ,..., Qm : Qi # Ps

[P1 ,..., Pn , Q1 ,..., Qm]c

`
n

i=1

wPi
`
m

j=1

wQi

Here the entire collection [P1 ,..., Pn , Q1 ,..., Qm] must be compatible. For a
given collection P1 ,..., Pn , we can now take the logarithm of the sum

log \ :
Q1 ,..., Qm : Qi # Ps

[P1 ,..., Pn, Q1 ,..., Qm ]c

`
m

j=1

wQi+= :
G: G c Pi , \i

wG

according to the procedure explained in the previous section, the notion of
compatibility of the cluster G with a polymer Pi meaning that each element
(small polymer) of the cluster is compatible with Pi . The result of this
procedure is precisely a mixed partition function as defined above. In most
applications one now wants to further expand another subclass of the
``large polymers'' that remain. To do this, one must be able to compute the
logarithm of the mixed polymer partition function.

We now investigate the Taylor series of the logarithm of partition
function (14)

log Z= :
I # I(P _ G)

wI with wI=CI `
P # supp I

wIP
P `

G # supp I

wIG
G (15)

where the sum is over the collection I=I(P _ G) of all multi-indices I
(integer valued functions on P _ G) and CI are given like in (3).
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It can be shown, similarly as in the previous section that nonzero CI

appear only for ``connected,'' indecomposable multi-indices I called clusters.
The decomposability of a multi-index with a support P _ G=(P1 _ G1) _
(P2 _ G2) means that any polymer resp. chain from the first system is com-
patible with any one from the second one. Since all the chains G are
mutually compatible, incompatibility can only occur between two polymers
or between a polymer and a chain.4

Here, the support of a multi-index I is defined as

supp I=[P: IP>0] _ [G: IG>0]

Denote by C(P _ G) the collection of all clusters on P _ G.
We define the functions

L#L($)=
&log(1&$)

$
, E#E($)=

e$&1
$

, L� #L� ($)=L2E

Note that with these definitions we have, for all x�0,

1+LE(eLx�L� &1)�ex (16)

Theorem 2. Assume that there are functions [a(G), b(G)>0,
G # P _ G] such that

|wP | ea(P)�$, |wG |�$, and (e |wG |&1)(eb(G)&1)�$ (17)

holds for any polymer P # P resp. chain G # G, and assume that the following
two bounds hold:

(1) Polymer fugacities satisfy a bound, for any chain or polymer
G # G _ P

:
P # P"G : P @ G

|wP | ea(P)�
b(G)

L�
(18)

(2) Chain fugacities wG satisfy a bound

:
G # G : G @ G

|wG | eb(G)�a(Q)&b(Q) (19)

for any polymer Q # P.5
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Then the following bounds are valid:

(a) For the sum of all clusters I # C(P _ G) containing a polymer
Q # P

:
I # C(P _ G): I % Q

|wI |�L |wQ | ea(Q) where wI=CI `
P # supp I

wIP
P (20)

(b) For the sum of all clusters I # C(P _ G) containing a chain G

:
I # C(P _ G): I % G

|wI |�|wG | eb(G) (21)

(c) For the sum of all clusters I # C(P _ G) incompatible with a
chain G # C

:
I # C(P _ G): I @ G

|wI |�
L
L�

b(G)�b(G) (22)

(d) For the sum of all clusters I # C(P _ G) incompatible with a
polymer Q # P

:
I # C(P _ G): I @ G

|wI |�a(Q) (23)

Proof. As before, we will use the induction over the total number
N=|P|+|G| of polymers and chains used in the model. The case N=0 is
trivial.

(a) Proof of (20): This is an analogy of (7). Denote by Z the parti-
tion function of the ``full model,'' by ZP"Q, G the partition function of the
model with polymer Q removed (i.e., with wQ=0). We have the relation
(here and below, Z#ZP, G)

:
I # C(P _ G): I % Q

wI=log ZP, G&log ZP"Q, G

=log \1+wQ exp \&:
I*

wI*++ (24)

where the sum �I* wI* is precisely over clusters I* from the P"Q model
incompatible with Q. We proceed analogously as in the proof (9)�(11) of
(7), but using the bound (18) instead of (6). By the induction assumption
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(23) for the P"Q model, we already have �I* |wI* |�a(Q). Then, by the
definition of L, we get the required induction step

:
I # C(P): I % Q

|wI |� &log \1&|wQ | exp \:
I*

|wI* |++�L |wQ | exp(a(Q))

(25)

(b) Denote by ZP, G"G resp. ZP""G, G the partition function of the
model with G removed resp. partition function of the model where only
polymers compatible with the chain G are allowed. For both models we
may assume the validity of (20)�(23) by the induction assumption, namely
we also have ZP""G, G=ewG ZP""G, G"G . Notice that the term �I # P _ G : I % G wI

equals

:
I : I % G

wI =log Z&log ZP, G"G

=log(ZP, G"G+(ewG&1) ZP""G, G"G)&log ZP, G"G

=log \1+(ewG&1)
ZP""G, G"G

ZP, G"G +
=log \1+(ewG&1) exp \& :

I* : I* % P, P @ G

wI*++
i.e.,

:
I : I % G

wI=wG+log \1+(1&e&wG ) \exp \& :
I*: I* % P, P @ G

wI*+&1++
(26)

where the sum �I* wI* is over clusters I* containing a polymer P incom-
patible with G. By the induction hypothesis (22) we have L� �I* |wI* |�
Lb(G) and we can continue in the estimate (of the sum of absolute values
in the expansion of the r.h.s. of (26))

:
I # C(P _ G): I % G

|wI |

�|wG |&log \1&(e |wG |&1) \exp \ :
I*: I* % P, P @ G

|wI* |+&1++
�|wG |&log(1&(e |wG |&1)(e(L�L� ) b(G)&1))

�|wG | (1+LE(e(L�L� ) b(G)&1))�|wG | eb(G) (27)

by (17) and (16). This proves (21).
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(c) If a cluster I is incompatible with a chain G then there is some
polymer Q # P incompatible with G such that I % Q. Summing the r.h.s of
(20) in (18), over all such Q @ G we arrive to (22) analogously as from (6)
to (8).

(d) If a cluster I is incompatibel with a polymer Q then (i) either I
contains a polymer Q� incompatible with Q (ii) or I contains a chain G
incompatible with Q. The sum � (i)

I |wI | corresponding to the first case is
bounded as �(L�L� ) b(Q) just by inserting (20) into (18). Analogously, the
sum � (ii)

I |wI | corresponding to the second case is bounded as �a(Q)&b(Q),
by inserting (21) into (19). Thus we get the desired bound (23).

ACKNOWLEDGMENTS

We thank Petr Holicky� , Ostap Hryniv, Christof Ku� lske, Karel
Netoc� ny� , Alan Sokal, and Daniel Ueltschi for useful discussions and com-
ments. Much of this work was done during a visit by both authors in Paris.
We especially thank Anne Boutet de Monvel and the Universite� Paris 7
for hospitality and financial support. M.Z. also thanks the Weierstrass
Institute for hospitality and financial support. The research of A.B. is
partially supported by Deutsche Forschungsgemeinschaft in the program
``Interacting random systems of high complexity'' and that of M.Z. under
Za� me� r CEZ:J13�98:113200007.

REFERENCES

1. Ch. Gruber and H. Kunz, General properties of polymer systems, Comm. Math. Phys. 22:
133�161 (1971).

2. G. Battle, A new combinatoric estimate for cluster expansions, Commun. Math. Phys. 94:
133�139 (1984).

3. G. Battle and P. Federbush, A note on cluster expansions, tree graphs identities, extra
1�N! factors!!!, Lett. Math. Phys. 8:55�57 (1984).

4. D. C. Brydges, A Short Course on Cluster Expansions, Critical Phenomena, Random
Systems, Gauge Theories (North-Holland, Amsterdam, 1986), pp. 129�184.

5. D. C. Brydges and P. Federbush, A new form of the Mayer expansion in statistical
mechanics, J. Math. Phys. 19:2064�2067 (1978).

6. C. Borgs, C. T. Chayes, and J. Fro� hlich, Dobrushin states for classical spin systems with
complex interactions, J. Statist. Phys. 89:895�928 (1997).

7. C. Cammarota, Decay of correlations for infinite range interactions in unbounded spin
systems, Commun. Math. Phys. 85:517�528 (1982).

8. J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View (Springer,
New York, 1981).

9. V. A. Malyshev, Cluster expansions in lattice models of statistical physics and the
quantum theory of fields, Russ. Math. Surveys 35:1�62 (1980).

10. E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical
Mechanics, Lecture Notes in Physics, Vol. 159 (Springer-Verlag, 1982).

777Cluster Expansions of Polymer Models



11. R. L. Dobrushin, Estimates of Semiinvariants for the Ising Model at Low Temperatures,
Topics in Statistical Physics, AMS Translation Series 2, Vol. 177, AMS, Advances in the
Mathematical Sciences-32, 1995, pp. 59�81.

12. F. R. Nardi, E. Olivieri, and M. Zahradn@� k, On the Ising model with strongly anisotropic
external field, J. Statist. Phys. 97:87�144 (1999).

13. A. D. Sokal, Chromatic polynomials, Potts models, and all that, preprint cond-mat
9910503 (1999).

14. S. Miracle-Sole� , On the convergence of cluster expansions, preprint CPT-99�P.3910
(1999).

15. J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model,
Comm. Math. Phys. 116:539�572 (1988).

16. A. Bovier and Ch. Ku� lske, A rigorous renormalization group method for interfaces in
random media, Rev. Math. Phys. 6:413�496 (1994).

17. R. Kotecky� and D. Preiss, Cluster expansions for abstract polymer models, Comm. Math.
Phys. 103:491�498 (1986).

18. D. Ueltschi, Discontinuous phase transitions in quantum lattice systems, Ph.D. thesis,
EPFL Lausanne, 1998.

19. R. Peierls, On the Ising model of ferromagnetism, Proc. of the Cambridge Phil. Soc.
32:477�481 (1936).

20. R. L. Dobrushin, Existence of a phase transition in the two-dimensional and three-dimen-
sional Ising models, Sov. Phys. Dokl. 10:111�113 (1965).

21. R. B. Griffiths, Peierls' proof of spontaneous magnetization of a two-dimensional Ising
ferromagnet, Phys. Rev. A 136:437�439 (1964).

22. R. A. Minlos and Ya. G. Sinai, Trudy Mosk. Math. Obsch. 19:113�178 (1968).
23. S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Theor. Math.

Phys. 25, 26:1185�1192, 39�49 (1975, 1976).
24. M. Zahradn@� k, An alternate version of Pirogov�Sinai theory, Comm. Math. Phys.

93:559�581 (1984).
25. M. Zahradn@� k, A short course on the Pirogov�Sinai theory, Rendiconti di Matematica,

Serie VII 18:411�486 (1998).
26. P. Holicky� and M. Zahradn@� k, Stratified Gibbs states, submitted to J. Stat. Phys. (1998).

Communicated by J. L. Lebowitz

778 Bovier and Zahradn@� k


